Attività didattica programmata/prevista

Insegnamenti previsti (distinti da quelli impartiti in insegnamenti relativi ai corsi di studio di primo e secondo livello).

Il programma didattico prevede il conseguimento della frequenza di:

- 3 moduli ad hoc da 3 CFU a scelta tra quelli sottoelencati,
- un corso da 6 CFU di una laurea magistrale o, in alternativa, 2 moduli ad hoc o scuole di dottorato nazionali e internazionali di pari carico didattico
- i corsi sulle competenze trasversali, comuni a tutti i dottorati.

Il Collegio dei Docenti ha stabilito, infatti, le attività di formazione di cui all'art. 4, comma 1, lett. f) del D.M. 226/2021 siano:

- •Linguistica.
- •Informatica.
- •Gestione della ricerca, della conoscenza dei sistemi di ricerca e dei sistemi di finanziamento
- •Valorizzazione dei risultati della ricerca e della proprietà intellettuale.

In particolare, per le competenze informatiche dei dottorandi del settore ingegneristico ha ricevuto la disponibilità della Prof.ssa Enza Pellegrino a tenere un corso su:

- metodi alle differenze finite per la risoluzione delle equazioni alle derivate parziali paraboliche e del metodo MOL, method of collocation on lines, applicato a problemi alle derivate parziali,
- e del Dott. Ing. Daniele Romano per un corso sull'
- uso avanzato di Matlab dal titolo ADVANCED MATLAB PROGRAMMING

Per le competenze informatiche del settore delle Scienze Giuridico-Aziendali, il corso riguarderà l'informatica forense e gli strumenti di verifica e ricerca nei principali data base di riferimento.

Per le competenze linguistiche, i dottorandi che non siano già in possesso di certificazioni avanzate della lingua inglese, vengono convocati dal Centro Linguistico e inquadrati nel corso adeguato al loro livello di partenza. I corsi offrono una formazione linguistica di tipo tecnico-scientifico, utile per la stesura di tesi e di articoli scientifici in inglese.

Il Prof. Fratocchi si è reso disponibile a tenere il corso "Valorizzazione dei risultati della ricerca e della proprietà intellettuale" e la Prof.ssa Marianna Rotilio a tenere il corso "Gestione della ricerca, della conoscenza dei sistemi di ricerca e dei sistemi di finanziamento".

Come in edizioni precedenti, verrà chiesta la disponibilità alla Dott.ssa Anna Bongiovanni - Consulente EURES Regione Abruzzo a tenere un modulo da 10 ore sulle "Opportunità offerte dalla rete europea EURES in merito a domanda ed offerta di elevata professionalità"

Si invitano i dottorandi seguire i corsi online della piattaforma "Researcher Academy" dell'ELSEVIER che fornisce accesso gratuito a innumerevoli risorse di e-learning progettate per supportare i ricercatori in ogni fase del loro percorso di ricerca: https://researcheracademy.elsevier.com/learn

Infine, i dottorandi/e potranno formarsi presso scuole di dottorato nazionali e internazionali specifiche attinenti al proprio progetto culturale.

Insegnamenti previsti (distinti da quelli impartiti in insegnamenti relativi ai corsi di studio di primo e secondo livello).

Denominazione insegnamento	Numero ore totali	Descrizione del corso	Eventuale curriculum	Note
moognamento	sull'intero		di	
	ciclo		riferimento	
MISURE E REGOLAZIONI BIO-TERMODINAMICHE ANCHE ATTRAVERSO IL SOFTWARE THERMOHUMAN®	30	Il corso ad hoc è diviso in tre parti. Una prima parte teorica, in cui si andranno ad approfondire i concetti relativi a: - Energia, Entropia e Termodinamica; - Stima delle proprietà termodinamiche; - Sistemi di conversione dell'energia; - Aspetti termodinamici dei processi biologici; Valutazione termodinamica dei bio-processi industriali. Si	Ingegneria	S. Sfarra

discuteranno, inoltre, esempi di letteratura del docente eseguiti in collaborazione con altri co-autori. Una seconda parte, in cui si illustreranno le potenzialità della tecnica termografica nell'ambito della termoregolazione corporea, anche ripercorrendo i principi dell'irraggiamento termico. All'uopo, si	
collaborazione con altri co-autori. Una seconda parte, in cui si illustreranno le potenzialità della tecnica termografica nell'ambito della termoregolazione corporea, anche ripercorrendo i principi dell'irraggiamento termico. All'uopo, si	
seconda parte, in cui si illustreranno le potenzialità della tecnica termografica nell'ambito della termoregolazione corporea, anche ripercorrendo i principi dell'irraggiamento termico. All'uopo, si	
potenzialità della tecnica termografica nell'ambito della termoregolazione corporea, anche ripercorrendo i principi dell'irraggiamento termico. All'uopo, si	
nell'ambito della termoregolazione corporea, anche ripercorrendo i principi dell'irraggiamento termico. All'uopo, si	
corporea, anche ripercorrendo i principi dell'irraggiamento termico. All'uopo, si	
dell'irraggiamento termico. All'uopo, si	
discuterà del software ThermoHuman®	
che si basa su una serie di algoritmi di	
visione artificiale che riconoscono il	
corpo umano, consentendo di	
segmentare automaticamente diverse	
aree della pelle in regioni di interesse	
(ROI) e di analizzarle. Si approfondirà	
dunque il concetto di "protocollo	
specifico" che garantisce un'elevata	
qualità nella ripresa delle immagini	
termiche, passando attraverso i	
concetti di acclimatazione e benessere	
termo-igrometrico dei sistemi biologici.	
Il corso ad hoc verrà svolto via Ms	
TEAMS (anche ricorrendo a seminari	
somministrati con la stessa modalità),	
a meno di una esperienza pratica di	
laboratorio (terza ed ultima parte) in cui	
si utilizzerà una termocamera utile per	
misure e regolazioni bio-	
termodinamiche.	
INTRODUCTION TO 30 Il modulo ad hoc per la didattica di Ingegneria A. D)i Giuliano
GREEN ENGINEERING dottorato "Introduction to green	
AND CATALYSIS engineering and catalysis" mira a offrire	
spunti e nuovi punti di vista nei temi di	
ricerca, con ottica sostenibile. Si parte	
dall'attualità con lezioni sul Green Deal	
Europeo e su un Glossario ragionato in	
tema di sostenibilità	
("biocombustibili", "biocarburanti",	
"fonti energetiche rinnovabili",	
"combustibili fossili", "ciclo del	
carbonio", "generazioni di	
biocombustibili", "bioraffineria", "life	
cycle assessment"). Si passa	
all'introduzione dei 12 Principi della	
Green chemistry, dei 12 Principi della	
Green engineering, delle Metriche	
green, con discussione delle recenti	
proposte in tema di input energetici per	
le reazioni chimiche (ultrasuoni,	
microonde, energia meccanica) e di	
solventi (solventi a migliorata	
sicurezza, acqua, reazioni senza	
solvente, liquidi ionici, CO2	
supercritica, H2O supercritica). Si	
termina con approfondimenti sulla	
catalisi: energia di attivazione, teoria	
degli urti, teoria del complesso attivato,	
meccanismo di reazione, velocità di	

		reazione, effetto cinetico dei		
		catalizzatori; fenomeni di trasporto e		
		reattivi in catalisi eterogenea con		
		catalizzatori porosi, e relativa		
		modellazione matematica; porosità nei		
		solidi con approfondimento su zeoliti e		
		modello BET per l'adsorbimento		
		gas/solido multistrato; cenni sulla		
		caratterizzazione di solidi catalitici		
		(ICP,XRD, TPR, TPD, TPO, TGA,		
		porosimetria e metodi BET e BJH, SEM,		
		TEM).		
ADVANCED	30	I processi di "stampa 3D" sono stati	Ingegneria	F. Lambiase –A.
CHARACTERIZATION OF		tradizionalmente utilizzati come		Paoletti
ADDITIVE		strumento di prototipazione rapida.		
MANUFACTURING		Grazie alla rapida diffusione di tali		
COMPONENTS		processi, l'ampiamento della gamma di		
		materiali (plastici, metallici, compositi		
		e ceramici), la riduzione del costo dei		
		macchinari e alla crescente precisione		
		e accuratezza delle macchine, i		
		vantaggi dei processi di "stampa 3D"		
		sono oggi sfruttati per la realizzazione di		
		parti finite. In tal modo è possibile		
		ottenere ulteriori vantaggi in produzione		
		quali: elevata flessibilità di processo,		
		estrema libertà delle geometrie		
		ottenibili, customizzazione spinta,		
		possibilità di realizzare lotti anche		
		unitari in maniera economica, riduzione		
		degli scarti e accorciamento della		
		supply chain.		
		In questo contesto, la caratterizzazione		
		dei componenti realizzati con tali		
		tecnologie diventa particolarmente		
		rilevante al fine di poter garantire le		
		caratteristiche desiderate. Il corso di		
		"Advanced characterization of Additive		
		Manufacturing components" è volto a		
		definire una serie di procedure volte a		
		determinare le caratteristiche		
		morfologiche e meccaniche di		
		componenti realizzati mediante		
		Additive Manufacturing.		
		Gli argomenti principali del corso sono i		
		seguenti:		
		· Classificazione dei processi di		
		additive manufacturing e difettosità dei		
		componenti		
		· Analisi morfologica e microscopica		
		(taglio, inglobamento, lappatura,		
		trattamento, ultrasuoni, osservazioni		
		microscopio ottico, osservazione		
		stereomicroscopio)		
		· Caratterizzazione delle superfici		
		(rugosità, ricostruzione 3D della		
		superfice, identificazione dei principali		
		parametri caratteristici delle superfici)		

		· Analisi delle porosità		
		· Prove di caratterizzazione		
		meccaniche (trazione, compressione,		
		flessione, durezza)		
		· Prove non convenzionali (prove di		
		indentazione strumentata)		
		· Prove di impatto		
PROGETTAZIONE DI	30	Lo sviluppo di circuiti elettronici	Ingegneria	L. Pantoli
CIRCUITI INTEGRATI		integrati è una necessità crescente,		
MONOLITI		volta sia al contenimento degli spazi sia		
		alla riduzione dei consumi, con		
		un'inevitabile diminuzione dei costi.		
		Il corso si propone di affrontare tutti gli		
		aspetti della progettazione di circuiti		
		integrati e della loro integrazione di		
		sistema. Nello specifico, saranno date		
		*		
		indicazioni sulle tecnologie disponibili,		
		sui processi di fonderia e l'uso dei		
		design kits, sulla preparazione dei		
		layout, sulle analisi elettromagnetiche		
		e di sensibilità, oltre che sugli aspetti di		
		packaging, testing e integrazione.		
		Verrà inoltre presentata una		
		panoramica dei principali CAD di		
		simulazione presenti sul mercato.		
SISTEMI AUTOMATICI DI	30	Obiettivo del corso è fornire agli	Ingegneria	S. Mari
MISURA E		studenti le conoscenze necessarie		
STRUMENTAZIONE		all'utilizzo dell'ambiente National		
VIRTUALE (LABVIEW)		Instruments LabVIEW per		
		l'acquisizione, l'elaborazione e la		
		gestione dei dati nelle applicazioni		
		tipiche della ricerca nei settori		
		dell'ingegneria industriale e		
		dell'informazione.		
		Il corso è strutturato in modo da		
		erogare i contenuti di LabVIEW Core 1 e		
		LabVIEWCore 2, così come previsti		
		dalle attività formative sviluppate da		
		National Instruments nei propri centri		
		di formazione internazionali, e prevede		
		il riconoscimento dello stesso		
		all'interno della LabVIEW Academy		
		istituita nel Dipartimento di Ingegneria		
		Industriale e dell'Informazione e di		
		Economia dell'Università dell'Aquila.		
		Il materiale didattico utilizzato è fornito		
		da National Instruments e comprende		
		slides, manuali per l'istruttore e libro		
		con questionari per la preparazione		
		degli studenti.		
		Argomenti principali sono: i)		
		caratteristiche hardware dei sistemi di		
		acquisizione dati e modalità di		
		interfacciamento con strumentazione		
		stand-alone; ii) struttura dell'ambiente		
		LabVIEW; iii) debugging and		
		troubleshooting; iv) cicli e strutture		
		case; v)gestione dei dati mediante		
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		

	I			
		array, cluster e classi; vi)		
		programmazione sequenziale e macchine a stati; vii) temporizzazione;		
		viii)salvataggio dei dati; ix) gestione dei		
		dati tra loop paralleli, code e variabili; x)		
		gestione degli errori; xi) compilazione e		
		distribuzione degli applicativi.		
OFF-DESIGN BEHAVIOR	60	CONTENUTI:	Ingognorio	F. Fatigati - 2
OF ENERGY SYSTEMS	00	30 ore: Richiami sulle trasformazioni	Ingegneria	moduli
OF ENERGY STOTEMS		termodinamiche e sulle macchine		moduti
		termiche. Fenomeni stazionari e		
		transitori. Analisi del comportamento		
		di impianti motori termici, impianti		
		frigoriferi, macchine a fluido operatrici		
		e motrici. Esempi ed esercizi.		
		30 ore: Modelli matematici per la		
		rappresentazione di componenti.		
		Analisi sperimentali e calibrazione dei		
		modelli. Esercitazioni in laboratorio su		
		motori a combustione interna,		
		macchine volumetriche,		
		frigocompressione, circuiti idraulici e		
		impianti a fluido organico.		
		METODOLOGIA: lezione frontale		
		mediante l'ausilio di diapositive in		
		formato elettronico; esercitazioni in		
		classe mediante l'utilizzo di fogli di		
		calcolo, software di programmazione,		
		simulazione e specifico di		
		dimensionamento (Matlab-Simulink,		
		ProMax,Gt-Suite, etc.). Esercitazioni		
		pratiche in laboratorio (sala motori) e		
		verifiche sperimentali.		
		MATERIALE DIDATTICO: dispense		
		fornite dal docente.		
LIFE CYCLE ASSESSMENT	30	La metodologia Life Cycle Assessment	Ingegneria	D. Di Battista
OF ENERGY SYSTEMS		(LCA) per la valutazione delle		
		interazioni tra i prodotti, i processi		
		produttivi e le realtà aziendali e la		
		sostenibilità ambientale. Richiami sui		
		concetti di sostenibilità. Descrizione e		
		approfondimento della metodologia		
		LCA nelle sue fasi operative (scoping,		
		inventario, analisi degli impatti,		
		interpretazione e miglioramento).		
		Studio dei meccanismi di impatto delle		
		principali categorie coinvolte.		
		Applicazione a macchine e sistemi		
		energetici semplici e complessi, anche		
		tramite l'utilizzo di software specifici		
DDOCETTAZIONE DECLI	20	(GaBi, SimaPro).	Indodes:	N M Immalita
PROGETTAZIONE DEGLI	30	Organizzazione e pianificazione degli	Ingegneria	N. M. Ippolito
ESPERIMENTI		esperimenti e le simulazioni utilizzando		
INDUSTRIALI –I		le tecniche di DOE (Design of		
		Experiments). Sperimentazione		
		fattoriale completa, con confusione		
		(quando qualche condizione		
		sperimentale non può essere		

	T			
		considerata costante) e frazionata (come ridurre il numero degli esperimenti). Il corso prevede un breve riepilogo dei concetti di statistica necessari per affrontare gli argomenti principali.		
PROGETTAZIONE DEGLI ESPERIMENTI INDUSTRIALI -II	30	Organizzazione e pianificazione degli esperimenti e le simulazioni utilizzando le tecniche di DOE (Design of Experiments). Sperimentazione fattoriale completa, con confusione (quando qualche condizione sperimentale non può essere considerata costante) e frazionata (come ridurre il numero degli esperimenti). Il corso prevede un breve riepilogo dei concetti di statistica necessari per affrontare gli argomenti principali.	Ingegneria	I. Birloaga
METODI E TECNICHE NUMERICHE PER L'ANALISI E IL DESIGN DI STRUTTURE ELETTROMAGNETICHE COMPLESSE NELLA BANDA DELLE MICROONDE	30	Il corso descriverà le principali tecniche numeriche per le analisi elettromagnetiche di strutture a microonde. Durante l'introduzione del corso verranno mostrati esempi di strutture complesse che necessitano di analisi elettromagnetiche FullWave. Saranno quindi richiamate le equazioni di Maxwell e introdotto il concetto di CEM (Elettromagnetismo computazionale). Successivamente verranno illustrate le principali tecniche Full Wave mettendo in risalto per ognuna punti di forza e debolezze. Verranno anche dati cenni sulle principali tecniche asintotiche e il loro utilizzo. Nella parte finale del corso saranno analizzate alcune strutture complesse al calcolatore utilizzando differenti software elettromagnetici sia FullWave che circuitali. L'obiettivo del corso è quello di mostrare le potenzialità e l'importanza dei software elettromagnetici FullWave per realizzare strutture complesse non convenzionali.	Ingegneria	A. Di Carlofelice
MODELLAZIONE ENERGETICA DINAMICA ENERGYPLUS Dynamic Energy Modeling - EnergyPlus	30	Il corso si propone di fornire gli strumenti necessari per una modellazione dinamica di sistemi termodinamici aperti, tramite il software di modellazione EnergyPlus. In particolare, durante il corso verranno analizzati i bilanci energetici che caratterizzano gli edifici ed i criteri di progettazione ed ottimizzazione energetica utilizzabili per essi. Particolare attenzione verrà rivolta agli strumenti utilizzabili per l'analisi e la valutazione delle prestazioni	Ingegneria	T. De Rubeis

		energetiche in simulazione dinamica.		
		Saranno trattati temi relativi al concetto		
		di: file climatico, definizione delle		
		proprietà termofisiche di elementi		
		passivi di un edifico e progettazione di		
		sistemi HVAC. Verrà, inoltre, analizzata		
		l'analisi statistica dell'accuratezza di		
		un modello di simulazione calibrato.		
		RISULTATI ATTESI Acquisizione delle		
		seguenti capacità: ° conoscenza e		
		definizione dei bilanci energetici		
		caratterizzanti un edificio, inteso come		
		sistema termodinamico aperto; °		
		conoscenza degli strumenti di		
		simulazione dinamica (EnergyPlus) per		
		la valutazione delle prestazioni		
		energetiche di un modello di		
		simulazione; ° definizioni dei concetti di		
		file climatico e calibrazione di un		
		modello di simulazione tramite analisi		
		statistica; ° ottimizzazione energetica		
		di componenti passivi e sistemi HVAC a		
		servizio degli edifici. Il corso è articolato		
		in: lezioni teoriche ed esercitazioni		
		progettuali (software EnergyPlus).		
LA SCELTA DEI MATERIALI	30	L'obiettivo del corso è fornire alcune	Ingegneria	V. Paolucci
NELLA PROGETTAZIONE	30	metodologie per la selezione dei	Iligoglicita	v. i adiacci
INDUSTRIALE		materiali da utilizzare nella costruzione		
II V DOG I KIN LE		di apparecchiature e impianti per		
		l'industria chimica e meccanica, sulla		
		base delle interazioni del materiale		
		stesso con l'ambiente in cui si trova a		
		operare. In particolare, la scelta del		
		materiale deve essere realizzata sulla		
		base di criteri di compatibilità con		
		l'ambiente e prevenzione dalla		
		corrosione. In aggiunta alla teoria, il		
		corso comprende una panoramica di		
		casi pratici di erronea scelta dei		
		materiali e una serie di esercizi di		
		progettazione di componenti per		
		l'industria in svariati ambienti di lavoro.		
COMPUTATIONAL	30	Panoramica sullo stato dell'arte delle	Ingegneria	V. De Santis
TECHNIQUES IN BIO-		tecniche numeriche nel bio-	ingognona	v. Do Garido
ELECTROMAGNETICS		elettromagnetismo (B-EM). Il corso		
222311.31 1/101421103		fornisce le basi per affrontare e		
		risolvere problemi in tale ambito. I		
		contenuti del corso riguardano l'utilizzo		
		delle tecniche numeriche più idonee a		
		risolvere problemi di dosimetria		
		numerica a seguito di esposizioni a		
		sorgenti EM (sia in bassa che alta		
		frequenza), così come alla		
		progettazione di applicazioni		
		biomedicali facenti uso di campi EM		
		(e.g., stimolazione transcraniale,		
		risonanze magnetiche, radioterapia,		
		ipertermia,).		
L	1	i ' '		

DDOTETIONE		ODUSTED # SODMATD # S		
LA PROTEZIONE	30	OBIETTIVI FORMATIVI Fornire una	Ingegneria	S. Innamorati
DELL'INFORMAZIONE		conoscenza dei principali concetti e		
		strumenti di teoria dei codici e		
		crittografia è lo scopo del Corso.		
		OBIETTIVI FORMATIVI (DETTAGLIO)		
		ERISULTATI DI APPRENDIMENTO		
		Al termine dell'insegnamento lo		
		studente dovrà:- conoscere le classi di		
		codici più importanti;- saper		
		individuare i parametri di un codice		
		lineare;- padroneggiare le principali		
		costruzioni di codici lineari; -		
		conoscere i principali algoritmi di		
		decodifica;- conoscere i principali		
		strumenti della crittografia e gli		
		algoritmi correlati.		
		PREREQUISITI Sono necessarie per		
		affrontare efficacemente i contenuti		
		dell'insegnamento le seguenti		
		conoscenze: spazi vettoriali. E'		
		consigliato aver sostenuto l'esame di		
		Geometria. MODALITÀ DIDATTICHE		
		Lezioni frontali e seminari degli		
		studenti. PROGRAMMA/CONTENUTO		
		Parte 1. Teoria dei codici:- introduzione		
		al problema della correzione degli		
		errori nella trasmissione dei dati;-		
		codici lineari su campi finiti;- distanza		
		di Hamming;- codici perfetti e MDS;-		
		codici di Hamming;- costruzione di		
		codici;- codici ciclici;- codici di Goppa.		
		Parte 2. Crittografia:- introduzione alla		
		crittografia classica;- alcuni sistemi		
		crittografici moderni.		
		TESTI/BIBLIOGRAFIAJ.H. van Lint -		
		Introduction to Coding Theory Neal		
		Koblitz - A Course in Number Theory		
		and Cryptography Douglas R. Stinson -		
		Cryptography. Theory and Practice		
MACHINE LEARNING PER	30	Obiettivi formativi Il Corso si pone	Ingegneria	G. Antonini -F.
L'INGEGNERIA		l'obiettivo di fornire allo studente le basi		Antonini
		per poter usare tecniche di Machine		
		Learning nel corso della sua attività di		
		ricerca. Prerequisiti Si richiede una		
		conoscenza di base del linguaggio		
		Python. Verranno forniti esempi di uso		
		delle librerie Numpy, Pandas,		
		Matplotlib. Modalità didattiche Le		
		lezioni frontali seguite da laboratori		
		esemplificativi. Sono previsti esercizi		
		da svolgere in autonomia che verranno		
		corretti con un approccio Peer Review.		
		Contenuto del corso Cosa è il ML, la		
		nuova 'elettricità', 'Il ritorno del		
		Machine Learning' Un nuovo paradigma		
		incentrato sui dati, pro e contro,		
		quando usare il Machine Learning.		
		Esempi di applicazioni di ML Tipi di ML		
	<u> </u>		<u>I</u>	

	T			
		L'importanza dei dati Introduzione a Jupyter Notebook Linear regression Logistic regression Il problema dell'Overfitting Reti Neurali Ottimizzazione Avanzata: Gradient Descent, Adam Strategie per eseguire una verifica di un modello di ML Training/Cross Validation/Test sets: Quiz Bias e Varianza Sviluppo di un Modello di ML Convolutional Neural Networks (CNN) Sequenze e Time Series Capstone Project Materiale didattico Il materiale didattico utilizzato nel corso sarà reso disponibile dai docenti.		
INDUSTRIAL APPLICATIONS OF VIRTUAL AND AUGMENTED REALITY	30	Il Corso, basato sullo sviluppo di piccoli progetti, propone un approccio pratico per introdurre i concetti base sulle le tecniche, i metodi e gli strumenti relativi alle applicazioni industriali che fanno uso della realtà virtuale e aumentata. Gli allievi impareranno a sviluppare delle applicazioni interattive all'interno del framework di sviluppo Unity3D, anche attraverso l'importazione di modelli 3D dal CAD. Verranno presentati dei piccoli progetti software per effettuare il riconoscimento di feature dalle immagini e il tracciamento di oggetti nello spazio. Tra gli obiettivi attesi del corso vi sono: - Acquisizione dei concetti basi legati alla computer graphics 3D e al V&AR - Acquisire l'abilità di sviluppare semplici ambienti interattivi all'interno di Unity 3D; - Sviluppare un sistema di tracciamento ibrido utilizzando depth-camera.	Ingegneria	E.Guardiani
ISTITUZIONI E MERCATI	30	Il modulo, coordinato dal Prof. Fabrizio Politi, approfondisce le questioni che ruotano attorno alle problematiche concernenti i rapporti fra le istituzioni sia di livello statale che europeo - ed i mercati. Sono approfondite in particolare le questioni concernenti i rapporti fra Stato e Regioni, i vincoli nazionali ed europei di bilancio, l'utilizzo delle nuove tecnologie ed i modelli di diritto pubblico e privato.	Giuridico- Aziendale	F. Politi (3 ore), L. Giallonardo: (9 ore), W. Giulietti: (6 ore), M. C. Cervale (6 ore), C. Equizi (6 ore)
DINAMICHE DELL'ORDINAMENTO GIURIDICO	30	Il modulo, coordinato dal Prof. Fabrizio Politi, approfondisce le questioni concernenti le dinamiche contemporanee dell'esperienza dell'ordinamento giuridico con particolare riferimento agli aspetti di diritto costituzionale, amministrativo e del diritto privato, senza trascurare le rilevanti questioni di politica	Giuridico- Aziendale	F. Politi (9 ore), F. Caroccia (6 ore), A. Fonzi (15 ore)

		economica che caratterizzano l'evolversi dei diversi istituti.		
DIRITTO AMMINISTRATIVO IN TRASFORMAZIONE	30	Il corso «Diritto amministrativo in trasformazione» prevede un ciclo di lezioni, tenuto anche da docenti di altre Università, che si propone anno per anno di esaminare, valutare e discutere le trasformazioni che sono intervenute o anche solo si delineano nell'amplissimo campo disciplinare del diritto amministrativo. Una particolare attenzione è dedicata all'inquadramento delle problematiche nel diritto sovranazionale e costituzionale. L'organizzatore del corso svolge anche le funzioni di discussant e modera il dibattito con i dottorandi.	Giuridico- Aziendale	W. Giulietti (coord.), F. Politi, G. Longobardi, , F. Caporale, V. Antonelli
PROBABILITA'	30	Lo scopo di questo corso è quello di mettere effettivamente gli studenti in grado di affrontare problemi reali, attraverso l'acquisizione di mezzi propri del calcolo delle probabilità senza richiedere loro un bagaglio matematico eccessivo. Verranno per questo fornite nozioni, quali: variabili aleatorie discrete e continue, Leggi dei grandi numeri, Teoremi del limite centrale, Catene di Markov. Si cercherà di giungere, in un tempo limitato, ad acquisire la capacità di servirsi di questi mezzi nelle situazioni concrete.	Ingegneria	Docente: Paola Tardelli Materiale didattico fornito dal docente
TRASPORTO DI CALORE E DI MASSA PER DIFFUSIONE	30	Il Corso propone un approfondimento delle problematiche legate al trasporto di calore e di massa per diffusione ponendo particolare attenzione ai modelli parabolici mono-dimensionali e non-stazionari. Dopo aver introdotto la notazione di Beck-Litkouhi, verranno approfondite le nozioni di condizioni al contorno e discussi diversi problemi diffusivi sia in mezzi finiti, che semi-infiniti. Partendo da una panoramica dei principali metodi di risoluzione delle equazioni di governo, verrà presentato il metodo di separazione delle variabili con riferimento ad un caso pratico. Come esempi di applicazione si introdurranno alcuni problemi inversi relativi alla stima delle proprietà termofisiche dei materiali. Definiti i cosiddetti "coefficienti di sensibilità", verranno inoltre fornite nozioni di "parameter estimation". Il Corso prevede anche dei richiami sui meccanismi di scambio termico e di massa, sulle equazioni della diffusione	Ingegneria	Giampaolo D'Alessandro

	ı			
		termica e di massa, sulle condizioni al		
		contorno e sulle proprietà termo-fisiche		
		dei materiali convenzionali, bio-		
		materiali e tessuti biologici, necessari		
		alla comprensione dei vari argomenti.		
PROGETTAZIONE	30	Il corso "Progettazione Avanzata di	Ingegneria	A. Fioravanti
AVANZATA DI SISTEMI		Sistemi Elettrici e Microgrid si propone		
ELETTRICI E MICROGRID		di fornire una conoscenza dettagliata		
Advanced Design of		nella progettazione, analisi e gestione		
Electrical Systems and		dei sistemi elettrici avanzati con un		
Microgrids		focus particolare sulle microgrid. I		
		partecipanti acquisiranno competenze		
		pratiche nella progettazione di impianti		
		elettrici resilienti, flessibili ed efficienti,		
		considerando le sfide attuali e le		
		tendenze emergenti nel settore		
		energetico. Verranno esaminate le		
		diverse tipologie di microgrid,		
		concentrandosi sull'integrazione di		
		fonti rinnovabili e sistemi di stoccaggio		
		come componenti essenziali. Il corso		
		prosegue esplorando l'Integrazione Al		
		e IoT nella gestione, insieme all'utilizzo		
		di sistemi di automazione e controllo		
		avanzati per massimizzare l'efficienza		
		operativa. Il corso culmina con		
		l'utilizzo di software di calcolo delle		
		reti e simulazione per lo sviluppo di un		
		progetto e la simulazione delle sue		
		performance, consentendo agli		
		studenti di applicare le competenze		
		acquisite.		
INTRODUCTION TO	30	Il modulo ad hoc per la didattica di	Ingegneria	F. Duronio
COMPUTATIONAL FLUID		dottorato "Introduction To	ii igogi ioria	1. Baronio
DYNAMICS USING		Computational Fluid Dynamics Using		
OpenFOAM		OpenFOAM " si prefigge come scopo		
Openi OAM		quello di fornire i principi di base dei		
		metodi numerici necessari per la		
		soluzione delle equazioni che		
		governano il moto dei fluidi in ambito		
		-		
		ingegneristico. La parte introduttiva del		
		corso riguarderà la definizione delle		
		equazioni di Navier-Stokes. Verranno		
		quindi descritti i metodi di		
		discretizzazione spaziale e temporale		
		e, in seguito, il metodo risolutivo ai		
		volumi finiti.		
		Il corso si concluderà con dei cenni		
		sulla modellazione della turbolenza nei		
		codici CFD.		
		All'interno del corso verrano proposti		
		degli esempi applicativi con il codice		
		open-source OpenFOAM riguardanti		
		sia la soluzione di problemi		
		fluidodinamici che la generazione della		
1	1	griglia di calcolo.		

Altre attività didattiche (seminari, attività di laboratorio, formazione interdisciplinare, multidisciplinare e transdisciplinare) di cui all'art. 4, comma 1, lett. f) D.M.226/2021

Tipo di attività	Descrizione dell'attività	Eventuale curriculum di riferimento
Seminari	Cicli di seminari tematici di cui i dottorandi sono tempestivamente informati. Seminari sulla didattica, sulla parità di genere e sullo sviluppo sostenibile, nonché sullo sviluppo di abilità di problem solving e soft skills. Saranno inoltre affrontate le tematiche inerenti agli obiettivi e alle missioni del PNRR.	Tutti i curricula
Attività di laboratorio	Ogni dottorando che per motivi di ricerca deve accedere alle attività di laboratorio deve preventivamente conseguire la frequenza ai corsi di sicurezza di Ateneo. Le attività sono successivamente organizzate, monitorate e supervisionate all'interno delle singole strutture.	Tutti i curricula
Attività di formazione interdisciplinare, multidisciplinare e transdisciplinare	Tutte le attività all'art. 4, comma 1, lett. f) D.M.226/2021 hanno caratteristiche di formazione interdisciplinare, multidisciplinare e transdisciplinare.	Tutti i curricula
Gestione della ricerca e della conoscenza dei sistemi di ricerca europei e internazionali e dei sistemi di finanziamento	Verranno svolte attività formative che presentano i programmi quadro di ricerca nazionali ed internazionali e le modalità di formulazione delle domande e di rendicontazione dei progetti. Verranno approfondite le tecniche di: Project Management: preparazione all'esame per certificazione CAPM E Progettazione Europea in ambito Horizon, valutazione dei costi e redazione delle domande. Quadro internazionale della ricerca.	Tutti i curricula
Valorizzazione e disseminazione dei risultati della ricerca, della proprietà intellettuale e dell'accesso aperto ai dati e ai prodotti della ricerca	Verranno effettuate lezioni sul funzionamento della regolamentazione della proprietà intellettuale, sulla formulazione delle proposte brevettuali e sulla modalità di valutazione dell'Ufficio Brevetti Europeo. Introduzione alla valorizzazione della proprietà intellettuale e al trasferimento tecnologico (IPTT); innovazione e aziende spin-off; introduzione al brevetto e requisiti fondamentali. Tutela legale della proprietà intellettuale.	Tutti i curricula
Principi fondamentali di etica e integrità		Tutti i curricula
Perfezionamento linguistico	Il perfezionamento della lingua inglese verrà effettuato utilizzando le strutture del Centro Linguistico di Ateneo in accordo a diversi livelli di apprendimento che verranno valutati caso per caso per i vari dottorandi. Si invitano i dottorandi seguire i corsi online della piattaforma "Researcher Academy" dell'ELSEVIER che fornisce accesso gratuito a innumerevoli risorse di e-learning progettate per supportare i ricercatori in ogni fase del loro	Tutti i curricula

	percorso di ricerca: https://researcheracademy.elsevier.com/learn	
Perfezionamento informatico	Per gli allievi di Scienze Giuridico-Aziendali, il corso riguarderà l'informatica forense e gli strumenti di verifica e ricerca nei principali data base di riferimento. Il corso consentirà anche di favorire le conoscenze relative ai supporti informatici di maggior riferimento nelle scienze giuridico-aziendali. Per gli allievi di formazione ingegneristica: sono previsti corsi di MatLab-Simulink e/o software analoghi o open source per applicazioni e processi. In particolare, verranno offerti: - un corso su "metodi alle differenze finite per la risoluzione delle equazioni alle derivate parziali paraboliche e del metodo MOL, method of collocation on lines, applicato a problemi alle derivate parziali", - un corso sull'uso avanzato di Matlab dal titolo ADVANCED MATLAB PROGRAMMING - un corso su "Machine Learning per la Simulazione di Sistemi Complessi" che apra la strada all'integrazione delle "metodologie basate sui modelli" e quelle "basate sui dati", attraverso l'uso di "modelli del sistema" e delle tecniche stocastiche (Metodo Monte Carlo), nonché del "digital twin" e dell'approfondimento di tematiche classiche di regressione lineare e di modelli basati su Reti Neurali Artificiali. Il corso introdurrà il linguaggio di programmazione R, in modo che si acquisiscano le seguenti abilità: ° creare modelli di machine learning in R utilizzando le metodologie e le librerie di machine learning più diffuse. ° creare e addestrare modelli di machine learning supervisionati per attività di previsione e classificazione binaria, tra cui la regressione lineare e la regressione logistica.	Corsi distinti per il percorso giuridico-aziendale e ingegneristico.